
J Math Chem (2013) 51:2165–2172
DOI 10.1007/s10910-013-0204-1

ORIGINAL PAPER

Equivalence of the deformed Rosen–Morse potential
energy model and Tietz potential energy model

Chun-Sheng Jia · Tao Chen · Liang-Zhong Yi ·
Shu-Rong Lin

Received: 21 October 2012 / Accepted: 3 June 2013 / Published online: 18 June 2013
© Springer Science+Business Media New York 2013

Abstract By applying the dissociation energy and the equilibrium bond length for a
diatomic molecule as explicit parameters, we generate an improved expression for the
deformed Rosen–Morse potential energy model. It is found that the deformed Rosen–
Morse potential model and the well-known Tietz potential model are the same empir-
ical potential function for diatomic molecules. With the help of the energy spectrum
expression of the deformed Rosen–Morse potential model, we obtain exact closed-
form expressions of diatomic anharmonicity constants ωexe and ωe ye.

Keywords Deformed Rosen–Morse potential model · Tietz potential model · Morse
potential model

1 Introduction

Modeling the interaction potential of diatomic molecules has long been an active
research field for both theoreticians and experimentalists [1–15]. The reason is that
the potential energy function provides the most compact way to summarize what we
know about a molecule. The first simple three-parameter empirical potential function
proposed by Morse [1] has been widely used in investigating molecular spectroscopy
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[16–18], and in performing molecular dynamics simulations for predicting many issues
such as lattice thermal conductivity [19], interfacial phonon transport [20], phase
transition [21], thermal transport [22], formation mechanism and mechanics of dip-
pen nanolithography [23], hydroxide anion interfacial activity [24], ligand vibrational
relaxation [25], effects of the thermal annealing on the nanoimprinting process [26],
etc.

Recently, equivalence of some empirical analytical potential functions has attracted
attentions [27–29]. By using the dissociation energy and the equilibrium bond length
for a diatomic molecule as explicit parameters, improved expressions of some empiri-
cal potential functions for diatomic molecules have been constructed. These empirical
potential energy functions include the Rosen–Morse potential [2], Manning–Rosen
potential [3], Frost–Musulin potential [4], Tietz potential [6], and Schiöberg poten-
tial [7]. With the comparison of improved expressions for several empirical poten-
tial functions, one has found that the Manning–Rosen potential, Schiöberg potential
and Deng–Fan potential are the same empirical potential function for diatomic mole-
cules [27]. Both versions of the Schiöberg potential function are the Rosen–Morse
potential function and Manning–Rosen potential functions [28], respectively. The
Wei potential and the well-known Tietz potential function are also the same solvable
empirical potential function [29]. The Tietz potential is remarkably good agreement
with the experimental RKR (Rydberg–Klein–Rees) data points and ab initio calcula-
tions [16,30].

By using the deformed hyperbolic functions introduced for the first time by
Arai [31], Eğrifes et al. [32] constructed the deformed Rosen–Morse potential as a
diatomic potential model. The deformed hyperbolic functions have been widely used
in many issues [32–35]. By applying the supersymmetric Wentzel–Kramers–Brillouin
(SWKB) method, Yılmaz et al. [36] obtained the bound state energy eigenvalues of
the deformed Rosen–Morse potential. In Ref. [37], the authors investigated the s-wave
bound state solutions of the Klein–Gordon equation with the deformed Rosen–Morse
potential. Motivated by the recent works about the equivalence of some empirical
potential energy functions, we attempt to study the equivalence between the deformed
Rosen–Morse potential function [32] and the Tietz potential function [6] for diatomic
molecules. In the present work, we also derive analytical expressions of diatomic
anharmonicity constants for the deformed Rosen–Morse potential model.

2 Equivalence of the deformed Rosen–Morse potential and the Tietz potential

An empirical potential energy function U (r) for diatomic molecules should satisfy
the following conditions:

dU (r)

dr

∣
∣
∣
∣
r=re

= 0, (1)

U (∞) − U (re) = De, (2)

d2U (r)

dr2

∣
∣
∣
∣
r=re

= ke = μω2
e , (3)
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where De is the dissociation energy, re is the equilibrium bond length, μ is the reduced
mass of a diatomic molecule, and ωe is the equilibrium harmonic vibrational frequency.

The deformed Rosen–Morse potential function proposed by Eğrifes et al. [32] is
defined as

UDRM(r) = B0 tanhq αr − U0

cosh2
q αr

, (4)

where B0, U0, α, and q are four potential parameters. Eğrifes et al. [32] applied the
deformed hyperbolic functions, which are defined as [31]

sinhq x = ex − qe−x

2
, coshq x = ex + qe−x

2
,

tanhq x = sinhq x

coshq x
, sechq x = 1

coshq x
, (5)

where q > 0 is a real parameter. The deformed parameter q has been extended to the
cases of q < 0 and complex domain [33,34]. The bound state energy spectra for the
deformed Rosen–Morse potential are given by [36]

Ev J = −2h̄2α2

μ

⎡

⎢
⎣

1

16

(

− (2v + 1) +
√

1 + 8μU0

h̄2α2q

)2

+
μ2 B2

0
h̄4α4

(

− (2v + 1) +
√

1 + 8μU0

h̄2α2q

)2

⎤

⎥
⎦ , (6)

where h̄ = h
2π

, h is the Planck constant, and v denotes the vibrational quantum number.
Substituting expression (4) into condition (1) yields

re = 1

2α
ln

(
q (2U0 − q B0)

2U0 + q B0

)

. (7)

In terms of condition (2) and expression (7), we obtain the relation

B0 −
[

−1

4

q2 B2
0 + 4U 2

0

qU0

]

= De. (8)

Solving Eqs. (7) and (8) for U1 and U2 leads us to obtain

B0 = De
(

q2 − e4αre
)

2q2 , (9)

U0 = De
(

q + e2αre
)2

4q
. (10)
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On the right hand of expression (4), we add one term 1
4

q2 B2
0 +4U 2

0
qU0

= 1
2

De
(

q2+e4αre
)

q2 ,
this only produce an energy of zero at the potential minimum, i.e. UDRM (re) = 0, and
does not affect the physical properties of the original deformed Rosen–Morse potential
function. Substituting expressions (9) and (10) into expression (4) and making some
algebraic simplifications, we can write the deformed Rosen–Morse potential as

UDRM(r) = De

(

1 − e2αre + q

e2αr + q

)2

. (11)

The well-known Tietz potential energy function for diatomic molecules reads [6]

UT (r) = De + De
(a + b)e−2αr − be−αr

(

1 + he−αr
)2 . (12)

This is conventionally defined in terms of five parameters, but only four parame-
ters are independent. The Tietz potential function has been rewritten in an improved
expression [29]

UT (r) = De

(

1 − eαre + h

eαr + h

)2

. (13)

If we replace 2α by α, and q by h, expression (11) turns into expression (13). This
tells us that the deformed Rosen–Morse potential and the Tietz potential are the same
empirical potential function for diatomic molecules.

Substituting expressions (9) and (10) into (6), we obtain the energy spectra for
deformed Rosen–Morse potential (11) with zero orbital angular momentum,

Ev J = 1

2
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, (14)

The four-parameter potential function for diatomic molecules proposed by Wei [8]
can be expressed as [29]

UW (r) = De

(

1 − ebre − hebre

ebr − hebre

)2

, (15)
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which is also the same with the well-known Tietz potential energy function [29].
Replacing b by 2α, and −hebre by q, we can make expression (15) turn into expression
(11).

Morse potential energy function reads [1]

UM (r) = De

(

1 − e−α(r−re)
)2

. (16)

The energy spectra for the Morse potential with zero orbital angular momentum are
given by [1]

Ev J = h̄2α2

2μ

[√
2μDe

h̄α
−
(

v + 1

2

)]2

. (17)

3 Evaluation of anharmonicity constants ωexe and ωe ye

Dunham [38] expressed the rovibrational energy spectra for diatomic molecules in a
double series,

Ev J =
∑

i, j

Yi, j

(

v + 1

2

)i

(J (J = 1)) j , (18)

where the coefficients Yi, j are related to spectroscopic constants. The rovibrational
energy levels Ev J are also written in the following form

Ev J

hc
= Gv + Bv J (J + 1) − Dv J 2(J + 1)2 + Hv J 3(J + 1)3 + · · · , (19)

where the pure vibrational energy levels are expressed as

Gv = Te + ωe

(

v + 1

2

)

− ωexe

(

v + 1

2

)2

+ ωe ye

(

v + 1

2

)3

+ · · · . (20)

In expression (22), ωe is the equilibrium harmonic vibrational frequency, ωexe and
ωe ye are anharmonicity constants.

By using the energy spectrum expressions (14) and (17), we can derive analytical
expressions of anharmonicity constants ωexe and ωe ye for the Morse potential and
deformed Rosen–Morse potential, respectively,

ωexe(M) = h̄2α2

2μhc
, (21)

ωe ye(M) = 0, (22)

ωexe(DRM) = h̄2α2

2μhc

(

q4 h̄4α4 + 4μDeq4h̄2α2 + 4μDee4αre q2h̄2α2

+8μDee2αre q3h̄2α2 + 16μ2 D2
e e2αre q3 + 16μ2 D2

e q4
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+16μ2 D2
e e6αre q + 16μ2 D2

e e8αre
)/(

q2h̄2α2 + 2μDee4αre

+4μDee2αre q + 2μDeq2
)2

, (23)

ωe ye(DRM) = − 16h̄3α3qμD2
e

(

e4αre − q2
)2

hc
(

q2h̄2α2 + 2μDee4αre + 4μDee2αre q + 2μDeq2
)5/2

. (24)

By using condition (3), we derive the following expressions satisfied by the potential
parameter α in the Morse potential function (16) and the deformed Rosen–Morse
potential function (11), respectively,

αM =
√

ke

2De
, (25)

αDRM = 1

2
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ke

2De
+ 1

2re
W

(

req

√

ke

2De
e
− re

2

√
ke

2De

)

, (26)

where subscripts M and DRM denote the Morse potential and deformed Rosen–Morse
potential, respectively. In expression (26), W denotes the Lambert W function, which
satisfies z = W (z)eW (z).

Table 1 Spectroscopic constants and the parameter q used in the present work

Molecule state De (cm−1) re (Å) ωe (cm−1) q Ref.

Na2 : X1�+
g 6022.6 3.07908 159.177 4.77172 [8]

Cl2 : X1�+
g 20,276 1.987 559.7 7.73121 [16]

N2 : X1�+
g 79,885 1.097 2358.6 0.68671 [16]

O+
2 : X2Ig 54,688 1.116 1904.8 0.47836 [16]

N+
2 : X2�+

g 71,365 1.116 2207.0 0.28175 [16]

NO+ : X1�+ 88,694 1.063 2376.4 0.53878 [16]

Table 2 Comparison of experimental values of ωexe and ωe ye with calculated values obtained by using
the Morse potential and deformed Rosen–Morse potentia

Molecular state ωexe (obs) ωexe (M) ωexe (DRM) ωe ye (obs) ωe ye (M) ωe ye (DRM)

Na2 : X1�+
g 0.70866 1.05176 0.87990 −0.004632 0 −0.0018038

Cl2 : X1�+
g 2.69427 3.86249 3.52417 −0.003325 0 −0.0042166

N2 : X1�+
g 14.324 17.40938 16.86483 −0.00226 0 −0.0077790

O+
2 : X2Ig 16.489 16.58619 16.26977 0.02057 0 −0.00540337

N+
2 : X2�+

g 16.0616 17.06316 16.83234 −0.04289 0 −0.00352018

NO+ : X1�+ 16.255 15.91787 15.46209 −0.01562 0 −0.00592573

All quantities are in cm−1
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The experimental data of three spectroscopic constants and the parameter q for six
diatomic molecule states are taken from the literatures [8] and [16]. In Table 1, we list
the values of spectroscopic constants and the parameter q used in the present work.
Taking the experimental values of De, re and ωe as inputs, we calculate the potential
parameters α by using expressions (25) and (26). By using expressions (21)–(24), we
calculate the values of anharmonicity constants ωexe and ωe ye for six diatomic mole-
cule states. In Table 2, we give the corresponding calculated values and experimental
data for ωexe and ωe ye. The experimental data of ωexe and ωe ye for the six diatomic
molecule states are taken from the literature [39]. Table 2 shows that the calculated
values of the anharmonicity constant ωexe by employing the deformed Rosen–Morse
potential are closer to the observed values than those calculated by using the Morse
potential. The Morse potential always gives zero value for the anharmonicity con-
stant ωe ye. However, the values obtained by the deformed Rosen–Morse potential
are nonzero. The values of the anharmonicity constant ωe ye for actual molecules are
nonzero.

4 Conclusions

By using the dissociation energy and the equilibrium bond length for a diatomic mole-
cule as explicit parameters, we generate improved expression for the deformed Rosen–
Morse potential energy function. It is found that the deformed Rosen–Morse potential
model and the well-known Tietz potential model are the same empirical potential func-
tion for diatomic molecules. In terms of the exact energy spectrum expression for the
deformed Rosen–Morse potential, we obtain the exact expressions for anharmonic-
ity constants ωexe and ωe ye for diatomic molecules. The values of anharmonicity
constants ωexe and ωe ye determined by using the deformed Rosen–Morse potential
are closer to the experimental values than those determined by applying the Morse
potential.
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